Dedicated Hardware for Real-Time Computation of Second-Order Statistical Features for High Resolution Images
نویسندگان
چکیده
We present a novel dedicated hardware system for the extraction of second-order statistical features from high-resolution images. The selected features are based on gray level co-occurrence matrix analysis and are angular second moment, correlation, inverse difference moment and entropy. The proposed system was evaluated using input images with resolutions that range from 512×512 to 2048×2048 pixels. Each image is divided into blocks of userdefined size and a feature vector is extracted for each block. The system is implemented on a Xilinx VirtexE-2000 FPGA and uses integer arithmetic, a sparse co-occurrence matrix representation and a fast logarithm approximation to improve efficiency. It allows the parallel calculation of sixteen co-occurrence matrices and four feature vectors on the same FPGA core. The experimental results illustrate the feasibility of real-time feature extraction for input images of dimensions up to 2048×2048 pixels, where a performance of 32 images per second is achieved.
منابع مشابه
Lossless Microarray Image Compression by Hardware Array Compactor
Microarray technology is a new and powerful tool for concurrent monitoring of large number of genes expressions. Each microarray experiment produces hundreds of images. Each digital image requires a large storage space. Hence, real-time processing of these images and transmission of them necessitates efficient and custom-made lossless compression schemes. In this paper, we offer a new archi...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملMulti-frame Super Resolution for Improving Vehicle Licence Plate Recognition
License plate recognition (LPR) by digital image processing, which is widely used in traffic monitor and control, is one of the most important goals in Intelligent Transportation System (ITS). In real ITS, the resolution of input images are not very high since technology challenges and cost of high resolution cameras. However, when the license plate image is taken at low resolution, the license...
متن کاملAdvanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملA Deep Model for Super-resolution Enhancement from a Single Image
This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006